Revisions to ICRU Operational Quantities Proposed Quantities of ICRU Report Committee 26

ICRP Symposium on Radiological Protection Dosimetry Tokyo, 18 February 2016

> Nolan E. Hertel, David Bartlett Co-Chairs, ICRU Report Committee 26

Caveat lector: Operational Quantity Definitions Should Be Considered "Proposed" Quantities Until the ICRU issues the Final Report with Dose Coefficients

ICRU Report Committee 26 Members

Members:

Co-chairs: Nolan Hertel and David Bartlett Günther Dietze[†], Jean-Marc Bordy, **Akira Endo**, Gianfranco Gualdrini and Maurizio Pelliccioni

Consultants:

Peter Ambrosi, Rolf Behrens, Jean-François Bottollier-Depois, Paolo Ferrari, Thomas Otto, Bernd Siebert, and Ken Veinot

Sponsors:

D.T. Burns, E. Fantuzzi, H-G. Menzel, S.M. Seltzer

Protection and Operational Quantities

• Protection Quantities (ICRP Publication 103)

- Define dose limits
- Optimization of radiation protection
- Not point quantities
- Not appropriate for instrument calibration
- Not appropriate for area and individual dose measurements

• Operational Dose Quantities (ICRU Reports 39 and 51)

- Measurements of them used as reasonable estimate of protection quantities
- Allows calibration of area and individual monitoring instruments

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Operational Quantities

- Area monitoring generally characterizes radiation fields with respect to their relevance for radiation protection measures
- Individual monitoring is used for determining the individual exposure of persons
 - Particularly occupationally exposed
 - Normally monitored by a wearing a personal dosimeter

Operational Dose Quantities for External Radiation Exposure - Current

Task	Area Monitoring	Individual Monitoring
Monitoring Of Effective Dose, E	Ambient Dose Equivalent, H*(10)	Personal Dose Equivalent, H _p (10)
Monitoring Of Equivalent Dose To Local Skin, H _{skin}	Directional Dose Equivalent, H´(0.07,Ω)	Personal Dose Equivalent, H _p (0.07)
Monitoring Of Equivalent Dose To The Lens Of The Eye, H _{lens}	Directional Dose Equivalent, H´(3,Ω)	Personal Dose Equivalent, H _p (3)

Expanded and Aligned Field

• Expanded radiation field is a hypothetical field

- Fluence, and angular and energy distributions have same value in the volume of interest as in actual field at the **point** of reference
- Expanded and aligned field is a hypothetical field as well
 - Fluence and its energy distribution are same as in the expanded field
 - The fluence is unidirectional

Rationale for Examination of the Operational Quantities

- Changes in protection quantities
- Eye lens dose added
- Changes in the applications of dose quantities
 - Operational quantities should be defined for all particles and energies for which protection quantities exist
 - ICRP 116: γ, n, e⁻, e⁺, p, μ⁻, μ⁺ up to 10 GeV; π⁻ and π⁺ up to 200 GeV; ³He⁺ up to 100 GeV/nucleon
 - Recommended set (ICRP74/ICRU57) only available for n, γ and e⁻ in a restricted energy range

Rationale for Examination of the Operational Quantities (cont.)

- Consistency with new protection quantity dose coefficients (ICRP Publication 116)
 - Full transport of secondary charged particles in reference voxel phantoms
 - Existing operational quantities computed for photons computed using the kerma approximation (ICRU57/ICRP74)
- ICRU tissue cannot be manufactured
- $H = \int D(L)Q(L)dL$ not experimentally realized

Use Ambient Dose Equivalent H*(10) as an Example

Current Definition:

Ambient dose equivalent at a point in a radiation field is the dose equivalent that would be produced by the corresponding **expanded and aligned field** in the **ICRU sphere at a depth**, **d**, on the radius opposing the direction of the aligned field.

Originally computed with the Q-L relationship of ICRP 26; now with **ICRP Publication 60 revised Q-L** (ICRU Report 57/ICRP Publication 74)

 Should estimate Effective Dose regardless of irradiation geometry (E_{max})

NATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

15

Impacts of Full Transport (ICRP 116) Compared to Kerma Approximation– Female Breast Equivalent Dose

16

Photon Absorbed Dose Represented Acceptably By Kerma Approximation

Current Operational Quantity	Energy
$H^*(10)$ and $H_p(10)$	≤ 3 MeV
$H'(3,\Omega)$ and $H_p(3)$	≤ 700 keV
$H'(0.07, \Omega)$ and $H_{\rm p}(0.07)$	≤ 70 keV

Shortcoming Of H*(10) Using Current Definition and Computed With Full Secondary Charged Particle Transport

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Try Different Depths in ICRU Sphere-Photons

Neutron Kerma versus Full Transport

 Chen and Chilton, Rad. Res. 77, 21-33 (1979) – Tissue Slab

Try Different Depths in ICRU Sphere - Neutrons

H*(d) Current Definition Using Full Secondary Transport

- Requires different depths were used over different energy ranges for a given radiation
- The same set of depths cannot be used for each particle type
- For example to represent photon E_{max} over the needed energy range, the following would be reasonable but not very straightforward:
 - H*(55): 0.3 20 MeV
 - H*(155): 20 MeV 1 GeV
 - H*(205): > 1 GeV

Operational Dose Quantities

- Requirements
 - Self evident
 - Comprehensible to the users
 - Determined by instruments
 - Without ambiguity for defining all the components of the radiation field
 - Be additive with respect to values from different radiation field components
- A single quantity cannot adequately fulfill these requirements; hence a set

Ambient Dose Equivalent (currently proposed)

Ambient dose equivalent, H^* at a point in a radiation field, is the product of the particle fluence, Φ , for the radiation field at that point, and a conversion coefficient, h, relating the particle fluence to the maximum value of the effective dose, $E_{eff max}$.

Calculated for the whole-body exposure of the ICRP adult anthropomorphic phantoms irradiation geometries:

- AP, PA, LLAT, RLAT, ROT, and ISO fields, and,
- •Superior-hemisphere, SS-ISO, and inferiorhemisphere, IS-ISO, isotropic fields.

Proposed Scheme of Operational Dose Quantities

Task	Area Monitoring	Individual Monitoring
Control of effective dose	Ambient Dose Equivalent, <i>H</i> *	Personal Dose Equivalent, <i>H</i> p
Control of doses to the the lens of the eye	Directional Absorbed Dose to the Lens of the Eye, $D'_{lens}(\Omega)$	Personal Absorbed Dose to the Lens of the Eye, <i>D</i> _{p,lens}
Control of doses to the local skin, the hands, and feet	Directional Absorbed Dose to Local Skin, $D'_{\text{local skin}}(\Omega)$	Personal Absorbed Dose to Local Skin, $D_{ m p\ local\ skin}$

Directional Absorbed Dose and Personal Dose to Local Skin - Phantoms

Local skin calculated for specific phantoms (ICRU tissue) in which the dose is averaged over a depth of 50 – 100 μ m and a cross sectional area of 1 cm²

- On the trunk: 300 x 300 x 150 mm slab (ρ=1.0 g cm⁻³)
- For the extremities: 73 mm diameter 300 mm pillar (ρ=1.11 g cm⁻³)
- For the finger: 19 mm \varnothing x 300 mm rod (ρ =1.11 g cm⁻³)
- Each phantom is covered with 2 mm skin (ρ =1.09 g cm⁻³)

Individual Monitoring Quantities

- Using the particle fluence at a point and its angular distribution:
 - *H*_p computed using a conversion coefficient for the value of the effective dose calculated for the whole-body exposure of the ICRP adult anthropomorphic phantoms to broad parallel beams
 - D_{p lens} computed using the <u>whole-body</u> exposure of the stylized eye model for broad parallel beams of the radiation field incident at that point
 - D_{p local skin} computed using a conversion coefficient calculated for exposure of the body or extremity to broad parallel beams of the radiation fields incident at that point.

Strengths Of Proposed Changes

- Strong ties to the ICRP protection quantities
- The ICRU sphere, *Q*(*L*), and the definition of a hypothetical expanded and aligned radiation field are not needed.
- Area monitoring based on conversion coefficients for the protection quantities
 - Maximum effective dose to ICRP anthropomorphic phantoms
 - Directional dose based on equivalent dose to the lens of the eye or equivalent dose to local skin of ICRP phantoms

Strengths Of Proposed Changes

- Individual monitoring based on equivalent dose at a depth in the body/or on conversion coefficients for the protection quantities, determined for the particular person wearing the dosimeter.
- This would result in a simplification of the system of quantities used in radiation protection.

Any comments would be gratefully received: nolan.hertel@me.gatech.edu davidtbartlett47@btinternet.com

